Function reference
Unprocessed data cleaning and checking
Functions for cleaning and QA checking unprocessed analyst data
-
rm_inf_na()
- Removes infinite and NA values from a dataframe of standardised effects
-
anonymise_teams()
- Anonymise ManyEcoEvo Data
-
clean_response_transformation()
- Clean response transformation variable
-
assign_transformation_type()
- Assign back-transformation type to be applied to analysts' point-estimates
-
augment_prediction_data()
- Augment analyst out-of-sample prediction data according to the outcome of pointblank interrogation
-
preprocess_prediction_files()
- Preprocess Prediction Files
-
preprocess_updated_prediction_files()
- Performs QA on re-submitted out-of-sample prediction files
-
read_submission_data()
- Read out-of-sample-prediction analyst submission data
-
validate_predictions_df_blue_tit()
validate_predictions_df_euc()
validate_predictions()
- Validating analyst-submitted predictions
Data Processing for Meta-analysis and Modelling
Calculating and standardising variables for meta-analysis and modelling
-
log_back()
logit_back()
probit_back()
inverse_back()
square_back()
cube_back()
identity_back()
power_back()
divide_back()
square_root_back()
- Back-transform effect-sizes to response scale.
-
back_transform_response_vars_yi()
- Back Transform Response Variables - yi
-
conversion()
- Apply back-transformation to beta estimates
-
conversion_2()
- Conditionally apply back-transformation
-
convert_predictions()
- Convert Predictions
-
est_to_zr()
- Convert estimate to Zr
-
Z_VZ_preds()
- Standardize out-of-sample predictions
-
pred_to_Z()
- Z-standardise a dataframe of back-transformed Out-Of-Sample Predictions
-
pmap_wrap()
standardise_response()
process_response()
log_transform_response()
- Wrapper function to standardise response variables
-
apply_VZ_exclusions()
- Apply VZ exclusion to a data-frame containing list-columns of yi subsets
-
exclude_extreme_VZ()
- Exclude extreme values of VZ from a dataframe of standardised predictions
-
exclude_extreme_estimates()
- Exclude extreme estimates above a threshold parameter sd
-
subset_fns_Zr()
- Subsetting Functions for effect-size meta-analysis
-
subset_fns_yi()
- Subsetting Functions for out-of-sample predictions meta-analysis
Transforming and standardising meta-analysis variables
Functions for computing and standardising response and predictor variables for meta-analysis.
-
box_cox_transform()
- Box-cox transform absolute deviation from the meta-analytic mean scores
-
variance_box_cox()
- Calculate the variance of the Box-Cox transformed absolute deviation scores
-
folded_params()
- Calculate the folded parameters for the Box-Cox transformation
-
log_transform()
- log transform response-scale yi estimates
-
log_transform_yi()
- Log-transform a data-frame of back-transformed out-of-sample estimates
-
calculate_deviation_score()
- Calculate deviation from meta-analytic mean
-
calculate_sorensen_diversity_index()
- Calculate mean Sorensen pair-wise dissimilarity values for a ManyAnalyst dataset
-
apply_sorensen_calc()
- Applies the sorensen diversity index calculation to variable diversity dataset
Process and create datasets for analysis
Functions for creating datasets ready for meta-analysis and modelling
-
make_param_table()
- Make parameter table
-
compute_MA_inputs()
- Compute meta-analysis inputs for a nested-dataframe containing different datasets/subsets of analyst data
-
compute_metaanalysis_inputs()
- Compute all metaanalysis inputs for different types of estimates
-
get_diversity_data()
- Get Diversity Data
-
prepare_ManyEcoEvo()
- Prepare ManyEcoEvo raw dataset
-
prepare_ManyEcoEvo_yi()
- Prepare ManyEcoEvo raw dataset for out-of-sample predictions
-
prepare_analyst_summary_data()
- Prepare data for summarising analyst summary statistics
-
prepare_df_for_summarising()
- Prepare data for summarising descriptive statistics
-
prepare_diversity_raw()
- Prepare diversity index data
-
prepare_diversity_summary_data()
- Prepare data for summarising variable diversity
-
prepare_response_variables()
- Prepare response variable data for nested ManyEcoEvo dataset
-
prepare_response_variables_yi()
- Prepare response variable data for nested ManyEcoEvo dataset - out of sample predictions only
-
prepare_review_data()
- Prepare peer-review data from Qualtrics
-
prepare_sorenson_summary_data()
- Prepare data for summarising Sorensen diversity indices
-
split_yi_subsets()
- Split a dataset of out-of-sample predictions by
estimate_type
-
rename_prediction_cols()
- Rename Prediction Columns
Model Fitting & Meta-analysis
Functions for fitting meta-analysis and other models described in Gould et al. (2023)
-
fit_MA_mv()
- Fit Meta-regression with random-effects
-
fit_boxcox_ratings_cat()
- Fit model of boxcox deviation scores as function of continuous ratings
-
fit_boxcox_ratings_cont()
- Fit model of boxcox deviation scores as function of continuous ratings
-
fit_boxcox_ratings_ord()
- Fit model of boxcox deviation scores as function of continuous ratings
-
fit_metafor_mv()
- Fit Multivariate Metaregression using metafoR
-
fit_metafor_mv_reduced()
- Fit reduced metaregression model
-
fit_metafor_uni()
- Fit univariate meta-analysis with metafor
-
fit_multivar_MA()
- Fit a multivariate meta-regression model
-
fit_sorensen_glm()
- Fit univariate glm of deviation scores on sorensen diversity index
-
fit_uni_mixed_effects()
- Fit model of Box-Cox transformed deviation scores as a function random-effects inclusion in analyses
Extracting Analysis Outputs & Visualisation
Functions for extracting model outputs, and visualising analysis results
-
i2_ml()
- i2_ml
-
calc_I2_ml()
- Calculate I2 for a multilevel meta-analytic model
-
apportion_heterogeneity_ml()
- Apportion heterogeneity of a multi-level meta-analytic model
-
gg_forest()
- Forestplot with ggplot2
-
get_forest_plot_data()
- Get Forest Plot Data from a Metafor Model
-
plot_cont_rating_effects()
- Plot Marginal Effects for Numeric Rating Model
-
plot_effects_diversity()
- Marginal Effects Plot of Diversity Index Model
-
plot_forest()
- Plot a Forest Plot
-
plot_model_means_box_cox_cat()
- plot_model_means_box_cox_cat
-
plot_model_means_orchard()
- Plot orchard-plot style model means
-
compare_ml_MA()
- Compare two fitted multi-level models
-
get_MA_fit_stats()
- Extract meta-analytic statistics like \(I^2\), etc.
-
run_model_checks()
- Perform model checking on series of fitted models for different datasets, exclusion sets and estimate types
Summarising Analysis Features
Functions for summarising qualitative and quantitative features of analyses, including model specification and variable selection, analyst conclusions and modelling approaches.
-
summarise_analyses_by_reviewer()
- Summarise analyses reviewed by reviewer
-
summarise_analysis_types()
- Summarise Analysis Types
-
summarise_conclusions()
- Summarise counts of qualitative conclusions across all datasets
-
summarise_conclusions_data()
- Count qualitative conclusions across all analyses for each dataset
-
summarise_model_composition()
- Summarise Model Composition
-
summarise_model_composition_data()
- Summarise model composition for a single dataframe of out of sample predictions or out or effect sizes
-
summarise_reviews()
- Summarise Peer-Reviews
-
summarise_reviews_per_analysis()
- Summarise reviews per each analysis
-
summarise_sorensen_index()
- Summarise Mean Sorensen's Index Estimates
-
summarise_sorensen_index_data()
- Summarise Sorensen's Mean Index Estimates for a dataframe
-
summarise_study()
- Summarise ManyAnalyst study data
-
summarise_variable_counts()
- Summarise variable usage across analyses
-
count_analyses_variables_used()
- Count number of analyses each variable is used
-
count_binary_coded_features()
- Summarise binary coded features of analyses
-
count_conclusions()
- Count the number of different conclusions made by analysts across each dataset.
-
count_teams_analyses()
- Summarise number of analyst teams and total analyses per dataset
-
calc_analyses_per_team()
- Calculate total number of analyses per team for a given subset
-
calc_summary_stats_binary()
- Calculate summary statistics for binary summary variables
-
calc_summary_stats_numeric()
- Calculate summary statistics for numeric summary variables
-
calc_teams_per_dataset()
- Calculate the number of teams per dataset for a given subset
-
calculate_variable_counts()
- Count the number of times variables are used across analyses
Scaling Up: Working with data subsets or multiple datasets
Functions for working with multiple datasets or data subsets within a tidyverse list-column framework.
-
compute_metaanalysis_inputs()
- Compute all metaanalysis inputs for different types of estimates
-
meta_analyse_datasets()
- Meta-analyses multiple datasets or subsets of datasets of analyst data
-
make_viz()
- Make visualisations wrapper function
-
generate_collinearity_subset()
- Generate Collinearity Data Subset
-
generate_exclusion_subsets()
- Generate subsets of analyst data based on different exclusion criteria
-
generate_expertise_subsets()
- Generate Expertise Data Subsets
-
generate_outlier_subsets()
- Generate Outlier Subsets for ManyEcoEvo datasets
-
generate_rating_subsets()
- Generate subsets of ManyEcoEvo Data based on Peer Review Ratings
-
generate_yi_subsets()
- Generate subsets of out-of-sample predictions data by
estimate_type
for multiple analysis datasets.
-
capwords()
- Capitalise Words
-
named_group_split()
- Split data frame by groups and name elements
-
`%in%`
- Negative Value Matching