Fit a meta-regression model with random effects using the metafor::rma.mv() function from the metafor::metafor package to a data.frame containing the estimates and variances for the meta-analysis.
Usage
fit_MA_mv(
effects_analysis = data.frame(),
outcome_colname,
outcome_SE_colname,
estimate_type = character(1L)
)Arguments
- effects_analysis
A dataframe containing the estimates and variances for the meta-analysis.
- outcome_colname
The name of the column containing the estimates.
- outcome_SE_colname
The name of the column containing the variances.
- estimate_type
The type of estimate to be used in the model. One of
c("Zr", "y50", "y25", "y75", or "yi").
Details
This function is a wrapper around the metafor::rma.mv() function from the metafor::metafor package. It takes a dataframe containing the estimates and variances for the meta-analysis, the name of the column containing the estimates, the name of the column containing the variances, and the type of estimate to be used in the model. It then fits a metaregression model with random-effects using the metafor::rma.mv() function called in fit_metafor_mv() and returns the fitted model.
Nested random effects are included for TeamIdentifier and TeamIdentifier/study_id.
See also
fit_metafor_mv(), metafor::rma.mv()
Other Model fitting and meta-analysis:
fit_boxcox_ratings_cat(),
fit_boxcox_ratings_cont(),
fit_boxcox_ratings_ord(),
fit_metafor_mv(),
fit_metafor_mv_reduced(),
fit_metafor_uni(),
fit_multivar_MA(),
fit_sorensen_glm(),
fit_uni_mixed_effects(),
poss_fit_boxcox_ratings_cat(),
poss_fit_boxcox_ratings_cont(),
poss_fit_boxcox_ratings_ord(),
poss_fit_metafor_mv(),
poss_fit_uni_mixed_effects()
Examples
ManyEcoEvo_results$effects_analysis[[1]] %>%
fit_MA_mv(beta_estimate, beta_SE, "Zr")
#>
#> ── Fitting metaregression ──
#>
#>
#> Multivariate Meta-Analysis Model (k = 131; method: REML)
#>
#> Variance Components:
#>
#> estim sqrt nlvls fixed factor
#> sigma^2.1 979.7136 31.3004 63 no TeamIdentifier
#> sigma^2.2 6623.0949 81.3824 131 no TeamIdentifier/study_id
#>
#> Test for Heterogeneity:
#> Q(df = 130) = 7544.9806, p-val < .0001
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> -10.9500 8.4194 -1.3006 0.1934 -27.4517 5.5518
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
