Prepare data for summarising descriptive statistics
Source:R/calculate_descriptive_statistics.R
prepare_df_for_summarising.Rd
Calculates the number of fixed variables, the number of random variables, the sample size, the number of interactions, the number of linear models, the number of generalised models, the number of fixed effects, and the number of random effects for each analysis in the dataset. Also codes whether each analysis employs a linear model, a generalised model, or a Bayesian model.
Examples
ManyEcoEvo::ManyEcoEvo %>%
select(data) %>%
unnest(everything()) %>%
prepare_df_for_summarising()
#> # A tibble: 302 × 40
#> response_id submission_id analysis_id split_id TeamIdentifier id_col
#> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 R_11787O3NmejXKAH 1 2 2 Ayr Ayr-1-2-2
#> 2 R_11787O3NmejXKAH 1 2 3 Ayr Ayr-1-2-3
#> 3 R_11787O3NmejXKAH 1 2 1 Ayr Ayr-1-2-1
#> 4 R_126erjKKuN3IwSJ 2 2 1 Bega Bega-2-2…
#> 5 R_126erjKKuN3IwSJ 2 2 2 Bega Bega-2-2…
#> 6 R_126erjKKuN3IwSJ 1 1 1 Bega Bega-1-1…
#> 7 R_126erjKKuN3IwSJ 1 1 2 Bega Bega-1-1…
#> 8 R_12cozGev3IOOBG2 4 4 1 Bell Bell-4-4…
#> 9 R_12cozGev3IOOBG2 3 3 1 Bell Bell-3-3…
#> 10 R_12cozGev3IOOBG2 1 1 1 Bell Bell-1-1…
#> # ℹ 292 more rows
#> # ℹ 34 more variables: beta_estimate <dbl>, contrast <chr>, adjusted_df <dbl>,
#> # beta_SE <dbl>, transformation <chr>, link_function_reported <chr>,
#> # dataset <chr>, mixed_model <dbl>,
#> # response_transformation_description <chr>,
#> # response_transformation_status <chr>, response_variable_type <chr>,
#> # response_construction_description <chr>, response_variable_name <chr>, …