Meta-analyses multiple datasets or subsets of datasets of analyst data
Source:R/meta_analyse_datasets.R
meta_analyse_datasets.Rd
Runs all meta-analyses and regression models for the ManyEcoEvo project analysis, including:
Fitting univariate / fixed-effects meta-analysis
Calculating the deviation of every effect size / point-estimate from the meta-analytic mean for all data subsetes
The absolute, box-cox transformed deviation scores
A univariate GLM regression of the transformed deviation scores on the sorensen diversity indices
A univariate GLM regression of the transformed deviation scores on the continuous peer-review ratings
A univariate GLM regression of the transformed deviation scores on the categorical peer-review ratings
A univariate GLM regression of the transformed deviation scores on a binary variable corresponding to whether the analysis was a mixed-effects model (i.e. GLM with random-effects) or not.
To be implemented: a multivariate regression #TODO
The deviation scores on transformed categorical ratings but with no intercept (for nice plotting / exploration).
Arguments
- data
A nested- dataframe grouped by
dataset
and / orexclusion_set
,estimate_type
, containing the list-column of prepared analyst subset dataeffects_analysis
ready for meta-analysis.- filter_vars
A list of expressions to filter the
data
dataframe by. E.g.rlang::exprs(exclusion_set == "complete", expertise_subset == "All", publishable_subset == "All", collinearity_subset == "All")
#' @param outcome_variable A named list containing either/and a list ofdataset
s and their corresponding outcome variables for each value ofdataset
, a list ofestimate_type
s and their corresponding outcome variables for each value ofestimate_type
.
Value
A nested dataframe with all columns of object parsed to arg data
, but with additional columns for the results of each analysis: MA_mod
, sorensen_glm
, box_cox_ratings_cont
, box_cox_ratings_cat
, box_cox_rating_cat_no_int
, uni_mixed_effects
Details
When filter_vars
are supplied the function will filter the data
dataframe by the expressions in the list, any data subsets excluded by filtering will not have multivariate met-analysis models fitted with fit_multivar_MA()
.
When the arguments outcome_variable
and/or outcome_variable
are not supplied, the function defaults to:
using
"Zr"
as the standardised effect size and"VZr"
as the standard error whenestimate_type
is"Zr"
.using
"Z"
as the standardised out-of-sample estimate and"VZ"
as the standardised out-of-sample estimate error whenestimate_type
is one ofc("yi", "y25", "y50", "y75")
.
The function will check if the data
dataframe contains the required columns for meta-analysis, including any variable names specified in calls to the filter_vars
argument. If the required columns do not exist then the function will stop with an error.
Function assumes that if argument outcome_variable
is supplied, then outcome_SE
is also supplied, and conversely, if outcome_SE
is not supplied, then neither is outcome_variable
(TODO not yet checked in function).
See also
Other Multi-dataset Wrapper Functions:
apply_VZ_exclusions()
,
compute_MA_inputs()
,
generate_exclusion_subsets()
,
generate_outlier_subsets()
,
generate_rating_subsets()
,
generate_yi_subsets()
,
make_viz()
,
prepare_ManyEcoEvo()
,
prepare_ManyEcoEvo_yi()
,
prepare_response_variables()
,
prepare_response_variables_yi()
,
summarise_analysis_types()
,
summarise_conclusions()
,
summarise_model_composition()
,
summarise_reviews()
,
summarise_sorensen_index()
,
summarise_variable_counts()
Examples
filter_vars <- rlang::exprs(
exclusion_set == "complete",
expertise_subset == "All",
publishable_subset == "All",
collinearity_subset == "All"
)