
Meta-analyses multiple datasets or subsets of datasets of analyst data
Source:R/meta_analyse_datasets.R
meta_analyse_datasets.RdRuns all meta-analyses and regression models for the ManyEcoEvo project analysis, including:
Fitting univariate / fixed-effects meta-analysis
Calculating the deviation of every effect size / point-estimate from the meta-analytic mean for all data subsetes
The absolute, box-cox transformed deviation scores
A univariate GLM regression of the transformed deviation scores on the sorensen diversity indices
A univariate GLM regression of the transformed deviation scores on the continuous peer-review ratings
A univariate GLM regression of the transformed deviation scores on the categorical peer-review ratings
A univariate GLM regression of the transformed deviation scores on a binary variable corresponding to whether the analysis was a mixed-effects model (i.e. GLM with random-effects) or not.
To be implemented: a multivariate regression #TODO
The deviation scores on transformed categorical ratings but with no intercept (for nice plotting / exploration).
Arguments
- data
A nested- dataframe grouped by
datasetand / orexclusion_set,estimate_type, containing the list-column of prepared analyst subset dataeffects_analysisready for meta-analysis.- filter_vars
A list of expressions to filter the
datadataframe by. E.g.rlang::exprs(exclusion_set == "complete", expertise_subset == "All", publishable_subset == "All", collinearity_subset == "All")#' @param outcome_variable A named list containing either/and a list ofdatasets and their corresponding outcome variables for each value ofdataset, a list ofestimate_types and their corresponding outcome variables for each value ofestimate_type.
Value
A nested dataframe with all columns of object parsed to arg data, but with additional columns for the results of each analysis: MA_mod, sorensen_glm, box_cox_ratings_cont, box_cox_ratings_cat, box_cox_rating_cat_no_int, uni_mixed_effects
Details
When filter_vars are supplied the function will filter the data dataframe by the expressions in the list, any data subsets excluded by filtering will not have multivariate met-analysis models fitted with fit_multivar_MA().
When the arguments outcome_variable and/or outcome_variable are not supplied, the function defaults to:
using
"Zr"as the standardised effect size and"VZr"as the standard error whenestimate_typeis"Zr".using
"Z"as the standardised out-of-sample estimate and"VZ"as the standardised out-of-sample estimate error whenestimate_typeis one ofc("yi", "y25", "y50", "y75").
The function will check if the data dataframe contains the required columns for meta-analysis, including any variable names specified in calls to the filter_vars argument. If the required columns do not exist then the function will stop with an error.
Function assumes that if argument outcome_variable is supplied, then outcome_SE is also supplied, and conversely, if outcome_SE is not supplied, then neither is outcome_variable (TODO not yet checked in function).
See also
Other Multi-dataset Wrapper Functions:
apply_VZ_exclusions(),
compute_MA_inputs(),
generate_exclusion_subsets(),
generate_outlier_subsets(),
generate_rating_subsets(),
generate_yi_subsets(),
make_viz(),
prepare_ManyEcoEvo(),
prepare_ManyEcoEvo_yi(),
prepare_response_variables(),
prepare_response_variables_yi(),
summarise_analysis_types(),
summarise_conclusions(),
summarise_model_composition(),
summarise_reviews(),
summarise_sorensen_index(),
summarise_variable_counts()
Examples
filter_vars <- rlang::exprs(
exclusion_set == "complete",
expertise_subset == "All",
publishable_subset == "All",
collinearity_subset == "All"
)