Plot Marginal Effects for Numeric Rating Model
Source:R/plot_cont_rating_effects.R
plot_cont_rating_effects.Rd
Plot Marginal Effects for Numeric Rating Model
Usage
plot_cont_rating_effects(
df = data.frame(),
response = character(),
predictor = character(),
group = NULL,
plot = TRUE,
back_transform = FALSE
)
Arguments
- df
Dataframe with column 'abs_deviation_score_estimate', 'lambda' and
predictor
,response
columns- response
A character vector naming the response variable column in
df
- predictor
A character vector naming the predictor variable column in
df
- group
An optional character vector naming the random effect / grouping variable column in
df
- plot
A logical indicating whether the plot should be rendered interactively or not, defaults to
TRUE
- back_transform
A logical indicating whether the response variable should be back-transformed from the box-cox transformed scale to absolute deviation scores
Value
A list, with the first element containing the fitted statistical model and the second element containing the plot
See also
Other Plotting functions:
get_forest_plot_data()
,
plot_effects_diversity()
,
plot_forest()
,
plot_model_means_box_cox_cat()
,
plot_model_means_orchard()
Examples
# ManyEcoEvo_results$effects_analysis[[1]] %>% #TODO use package data object instead of targets object
# unnest(review_data) %>%
# plot_cont_rating_effects(response = "box_cox_abs_deviation_score_estimate",
# predictor = "RateAnalysis",
# group = "ReviewerId",
# back_transform = TRUE) %>%
# pluck(2) +
# ggforce::facet_zoom(xlim = c(0,100), ylim = c(0,0.55)) +
# ggpubr::theme_pubclean() +
# ggplot2::xlab("Rating") +
# ggplot2::ylab("Deviation In Effect Size from Analytic Mean")