Compute model summaries, tidy model summaries, model fit statistics, funnel plots and forest plots for a tibble of multiple fitted models
Arguments
- data
a nested tibble with processed and standardised data stored in list-column
data
, grouped by variablesexclusion_set
,dataset
,estimate_type
,publishable_subset
,expertise_subset
,collinearity_subset
. Each group contains a list-columnmodel
containing fitted models of classrma.uni
,rma.mv
ormerMod
.
Value
a nested tibble containing model summaries, fit statistics, plots, model parameters and other components of fitted model objects, see details.
Details
make_viz()
is a wrapper function that takes a nested tibble of fitted models and computes model summaries, tidy model summaries, model fit statistics, funnel plots and forest plots for each model. The function is designed to be used in conjunction with ManyEcoEvo_results
-type datasets, which contains multiple fitted models for each dataset and estimate type.
The following functions are applied to each model:
mod_summary
:base::summary()
to extract model summariestidy_mod_summary
:broom.mixed::tidy()
to extract tidy model summariesmod_fit_stats
/mod_glance
:performance::performance()
andbroom::glance()
to extract model fit statisticsfunnel_plot
:metaviz::viz_funnel()
to create funnel plots forrma.uni
modelsforest_plot
:gg_forest()
to create forest plots forrma.mv
modelsMA_fit_stats
:get_MA_fit_stats()
to extract model fit statistics forrma.mv
modelsmodel_params
:parameters::parameters()
to extract model parameters
Note that where the fitted model object doesn't exist, i.e. is a NA
or NULL
value, the function will return NA
for all components.
See also
get_MA_fit_stats()
, gg_forest()
Other Multi-dataset Wrapper Functions:
apply_VZ_exclusions()
,
compute_MA_inputs()
,
generate_exclusion_subsets()
,
generate_outlier_subsets()
,
generate_rating_subsets()
,
generate_yi_subsets()
,
meta_analyse_datasets()
,
prepare_ManyEcoEvo()
,
prepare_ManyEcoEvo_yi()
,
prepare_response_variables()
,
prepare_response_variables_yi()
,
summarise_analysis_types()
,
summarise_conclusions()
,
summarise_model_composition()
,
summarise_reviews()
,
summarise_sorensen_index()
,
summarise_variable_counts()
Examples
make_viz(ManyEcoEvo_results)
#> Random effect variances not available. Returned R2 does not account for random effects.
#> Random effect variances not available. Returned R2 does not account for random effects.
#> Random effect variances not available. Returned R2 does not account for random effects.
#> Random effect variances not available. Returned R2 does not account for random effects.
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "blue tit" ──
#>
#> ── Creating gg-forest-plot of `estimate_type` estimates for `dataset` = "eucalyptus" ──
#>
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> Package 'merDeriv' needs to be installed to compute confidence intervals
#> for random effect parameters.
#> # A tibble: 133 × 16
#> exclusion_set dataset publishable_subset expertise_subset collinearity_subset
#> <chr> <chr> <chr> <chr> <chr>
#> 1 complete blue t… All All All
#> 2 complete blue t… All All All
#> 3 complete blue t… All All All
#> 4 complete blue t… All All All
#> 5 complete blue t… All All All
#> 6 complete blue t… All All All
#> 7 complete blue t… All All All
#> 8 complete eucaly… All All All
#> 9 complete eucaly… All All All
#> 10 complete eucaly… All All All
#> # ℹ 123 more rows
#> # ℹ 11 more variables: estimate_type <chr>, model_name <chr>, model <list>,
#> # mod_summary <list>, tidy_mod_summary <list>, mod_fit_stats <list>,
#> # mod_glance <list>, funnel_plot <list>, forest_plot <list>,
#> # MA_fit_stats <list>, model_params <list>