Summarises the ManyAnalyst study data by calculating summary statistics for each subset of data.
Usage
summarise_study(
ManyEcoEvo,
ManyEcoEvo_results,
id_subsets,
subset_names,
filter_vars = NULL
)
Arguments
- ManyEcoEvo
A ManyAnalyst style tibble containing the data to be analysed.
- ManyEcoEvo_results
A ManyAnalyst results style tibble containing the results of the data to be analysed.
- id_subsets
A list of tibbles containing the
id_col
for each subset ofdata
.- subset_names
A character vector equal to the length of
id_subsets
; the name of data subsets inid_subsets
.- filter_vars
A list of expressions to filter
ManyEcoEvo_results
data
Examples
id_subsets <- list(ManyEcoEvo:::effect_ids, ManyEcoEvo:::prediction_ids)
subset_names <- c("effects", "predictions")
filter_vars <- rlang::exprs(
exclusion_set == "complete",
estimate_type == "Zr",
publishable_subset == "All",
expertise_subset == "All",
collinearity_subset == "All"
)
summarise_study(ManyEcoEvo::ManyEcoEvo, ManyEcoEvo::ManyEcoEvo_results, id_subsets, subset_names, filter_vars = filter_vars)
#> # A tibble: 3 × 9
#> subset_name data n_teams sorensen_summary teams_per_subset
#> <chr> <list> <int> <list> <list>
#> 1 all <tibble [302 × 40]> 145 <tibble [2 × 5]> <tibble [146 × 3]>
#> 2 effects <tibble [210 × 40]> 102 <tibble [2 × 5]> <tibble [103 × 3]>
#> 3 predictions <tibble [88 × 40]> 56 <tibble [2 × 5]> <tibble [57 × 3]>
#> # ℹ 4 more variables: conclusions_summary <list>,
#> # variable_count_summary <list>, model_term_summary <list>,
#> # model_type_summary <list>